log以a為底b的對數――loga(b)=logc(b)/logc(a)也可以寫lg(b)]/lg(a)也就是log以10為底b的對數。換底公式是高中數學常用對數運算公式,可將多異底對數式轉化為同底對數式,結合其他的對數運算公式一起使用。計算中常常會減少計算的難度,更迅速的解決高中范圍的對數運算。
在數學中,對數是對求冪的逆運算,正如除法是乘法的倒數,反之亦然。這意味著一個數字的對數是必須產生另一個固定數字(基數)的指數。在簡單的情況下,乘數中的對數計數因子。更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對于b不等于1的任何兩個正實數b和x計算對數。如果a的x次方等于N(a>0,且a≠1),那么數x叫做以a為底N的對數(logarithm),記作x=logaN。其中,a叫做對數的底數,N叫做真數。
以a為底N的對數記作logan。對數符號log出自拉丁文logarithm,最早由意大利數學家卡瓦列里(Cavalieri)所使用。20世紀初,形成了對數的現代表示。為了使用方便,人們逐漸把以10為底的常用對數及以無理數e為底的自然對數分別記作lgN和lnN。
dna水解后得到的產物是什么
時間:2023-09-16 21:0:39invention可數嗎
時間:2023-09-13 09:0:04地球大氣層從低到高依次是
時間:2023-09-18 07:0:54宇文新州之懿范句式
時間:2023-09-21 15:0:08