2.會求曲線上一點處的切線方程與法線方程。
3.熟記導數的基本公式,會運用函數的四則運算求導法則,復合函數求導法則和反函數求導法則求導數。會求分段函數的導數。
4.會求隱函數的導數。掌握對數求導法與參數方程求導法。
5.理解高階導數的概念,會求一些簡單的函數的n階導數。
6.理解函數微分的概念,掌握微分運算法則與一階微分形式不變性,理解可微與可導的關系,會求函數的一階微分。
(二)中值定理及導數的應用
1.理解羅爾(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它們的幾何意義,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。會用羅爾中值定理證明方程根的存在性。會用拉格朗日中值定理證明一些簡單的不等式。
2.掌握洛必達(L’Hospital)法則,會用洛必達法則求“”,“”,“”,“”,“”,“”和“”型未定式的極限。
3.會利用導數判定函數的單調性,會求函數的單調區間,會利用函數的單調性證明一些簡單的不等式。
4.理解函數極值的概念,會求函數的極值和最值,會解決一些簡單的應用問題。
5.會判定曲線的凹凸性,會求曲線的拐點。
6.會求曲線的漸近線(水平漸近線、垂直漸近線和斜漸近線)。
7.會描繪一些簡單的函數的圖形。
三、一元函數積分學
(一)不定積分
1.理解原函數與不定積分的概念及其關系,理解原函數存在定理,掌握不定積分的性質。
2.熟記基本不定積分公式。
3.掌握不定積分的第一類換元法(“湊”微分法),第二類換元法(限于三角換元與一些簡單的根式換元)。
4.掌握不定積分的分部積分法。
5.會求一些簡單的有理函數的不定積分。
(二)定積分
1.理解定積分的概念與幾何意義,掌握定積分的基本性質。
2.理解變限積分函數的概念,掌握變限積分函數求導的方法。
3.掌握牛頓—萊布尼茨(Newton—Leibniz)公式。
4.掌握定積分的換元積分法與分部積分法。
5.理解無窮區間上有界函數的廣義積分與有限區間上無界函數的瑕積分的概念,掌握其計算方法。
6.會用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉一周所得的旋轉體的體積。
四、無窮級數
(一)數項級數
1.理解級數收斂、級數發散的概念和級數的基本性質,掌握級數收斂的必要條件。
2.熟記幾何級數,調和級數和p—級數的斂散性。會用正項級數的比較審斂法與比值
溫州大學轉專業政策規定及
時間:2024-07-12 10:0:56浙大城市學院轉專業政策規
時間:2024-07-12 10:0:47溫州大學本科招生網登錄入
時間:2024-07-12 09:0:18浙大城市學院本科招生網登
時間:2024-07-12 09:0:06